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Abstract 
In VLSI, crossings occupy space and cause delay. 

Therefore, there is significant benefit to planar cir- 
cuits. We propose the use of planar multiple-valued 
decision diagrams to produce planar multiple-valued 
circuits. Specifically, we show conditions on 1) thresh- 
old functions, 2 symmetric functions, and 3) mono- 

diagrams. Our results apply to  binary functions, as 
well. For example, we show that all two-valued mono- 
tone increasing threshold functions of up to five vari- 
ables have planar binary decision diagrams. 
Index terms: binary decision diagram (BDD), dual 
function, threshold function, field programmable gate 
array (FPGA). 

1 Introduction 
Multiple-valued decision diagrams (MDDs) are 

multiple-valued extensions of binary decision diagrams 
(BDDs). MDDs are useful for designing multiple- 
valued logic networks; by replacing each node of an 
MDD with a multiple-valued multiplexer (MUX), we 
have a multiple-valued network for the function. 

Fig. 1.1 shows a BDD for f = 2122 V 2 3 5 4 .  This 
BDD has no crossing, which we denote as r-planar. 
Fig. 1.2 shows a BDD for the same function with a 

tone increasing z unctions that produce planar decision 
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Figure 1.3: A planar drawing of BDD. 

different ordering of the input variables. In this case, 
however, the BDD is not T-planar, since it has cross- 
ings. We say a function has an r-planar BDD if we 
can draw a planar BDD in a restricted form: 

Definition 1.1 A BDD in which 

1. a 1-edge emerges to the right of the node, 
2. a 0-edge emerges to the left, and 
3. the constant 1 node is to the left of the constant 

0 node 

is r-planar (restricted-planar) zf zt has no crossings. 

r-planar graphs are special case of planar graphs. 
Fig. 1.3 shows a planar BDD that is isomorphic to 
the BDD in Fig. 1.2, which is not an r-planar BDD. 
Fig. 1.4 shows a network for f = S I X ~ V X ~ X ~ .  It corre- 
sponds to the BDD in Fig. 1.1, where each node in the 
BDD is replaced with a binary MUX. Note that this 
network has no crossings if we ignore the lines for the 
input variables. Fig. 1.5 is a network that corresponds 
to the BDD in Fig. 1.2. In this case, the network has 
crossings. When we implement networks in the form 
of LSIs, crossings are often expensive; they require ad- 
ditional channels and increase delay. Especially in the 
case of field programmable gate arrays (FPGAs) 21, 
crossings produce considerable delay. Since the de I ay 
of interconnections is the most important problem in 
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Figure 1.4: An MUX Figure 1.5: An MUX 
network corresponding network corresponding to 
to Fig. 1.1. Fig. 1.2. 

FPGA design, networks without crossing are quite at- 
tractive. Also, in sub-micron LSIs, networks without 
crossings are desirable, since the delays in the inter- 
connections and crossing are comparable to the delay 
for logic elements. 

In this paper, we identify classes of logic functions 
whose MDDs and BDDs are r-planar. For these func- 
tions, we can easily derive logic networks whose lay- 
outs are relatively simple. Initially, we consider unre- 
stricted MDDs and BDDs. Subsequently, we consider 
reduced ordered MDDs and BDDs that do not con- 
tain redundant nodes nor nodes representing the same 
function. 

2 r-Planar MDDs 
In this section, we define multiple-valued input two- 

valued output functions [ll). Then, we show some 
classes of functions having r-planar MDDs. These re- 
sults will be used for the identification of functions 
having r-planar BDDs in Section 3. As for the defini- 
tions for BDDs and MDDs, refer to [l, 3, 71. 
Definition 2.1 A multiple-valued input two- 
valued output function is 

n 

i= 1 
g ( x l r x 2 , .  ..,z,) : x Pi + B ,  

where xi  assumes a value in P; = {0,1,. . . ,pi - 1) and 
B = {0,1}. 

Definition 2.2 Let xi be a vuriable taking values in 
P; = {0,1,. . .,pi - 1). Let Si be a subset of Pi. Then, 
5:' is a literal of Si, where xf' = 1 i f  z; E S; ,  and 
x?' = 0 otherwise. When si contains only one ele- 
ment a E P;, .Ia' is written as z ~ .  

Lemma 2.1 A multiple-valued input two-valued out- 
put function f can be represented b y  an expression 

v z:'l z2 s 2 . .  .y%I n ' f (z1,22, . . .  ,zn) = 
(SI ,Sz,...,S,) 

where V is OR and concatenation is A N D .  
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Figure 2.1: Multiple-valued MUX. 

f (0 .0 '  :... 0 )  f (PI.P2 ..... Pn) 

Figure :!.2: Tree network with multiple-valued MUXs. 

A multiple-valued multiplexer (MUX), shown in 
Fig. 2.1, selects one terminal according to the value 
of z, where z E {0,1,. . . , p  - 1). The function of the 
MUX is, represented by 

f(.) = X O f o  v X l  f l  v * .  . v xp-1 f p - l .  

Lemma 2.2 The tree network of MUXs shown in 
Fig. 2..2 realizes an  arbitrary multiple-valued input 
two-valued output function. 

Definition 2.3 Let o = (al, a2,. . . ,a,) and b = 
(bl , b2 , . . . , b, be vectors such that a;,bi E 
{0,1,. . . , p i  - 1). W e  define a binary relation 5 be- 
tween uectors as follows: a 5 b iff a appears before b 
an lexicographical order. 

For example, ( O , O , O )  5 (O,O,l), and (0,1,1) 5 
(170, 0). 
Definition 2.4 A function f ( x )  is I-monotonic 
(lexicoy~raphicdly monotonic) iff the following con- 
ditions hold: For vectors a = ( a , ,  a2, . . . , a,) and 

a 5 b, implies f ( a )  5 f ( b ) ,  where the logic values are 
viewed as integers. f ( X )  g ( X )  iff f ( a )  5 g(a) for 
any a. 

b = ( b l ,  b2,. . . , bn),  such that ai, bi E {0,1,. . . ,p ;  - l}, 

Lemma 2.3 Suppose that a function f is 1-  
monotonic. Let X1 = ( 2 1 ,  2 2 , .  . . ,xi), and 
X 2  = ( x ; + I , z ; + ~ ,  . . . ,x,) be a partition of X = 
( ~ 1 ~ x 2  , . . .  ,zn).  Then, f ( a , . X z )  C f(b,A-*) for any 
a = ( a l ,  a2,. . . ,a ,1 )  and b = ( b l ,  b2,. . . , b,) such that 
a 5 b. 



(Proof) Suppose that for some c = (ci+1, ci+2,. . . , C n ) ,  

f ( a , c )  > f ( b , c )  holds. Because a 5 b, we have 
(a ,c)  5 ( b , c ) .  However, this contradicts the assump- 
tion that f is 1-monotonic. Thus, there are no vector 
c that satisfies f ( a ,  c )  > f ( b ,  c). (Q.E.D.) 

Definition 2.5 A complete MDD is an MDD that has 
a distinct node for every assignment of values to the 
variables. That is, no two nodes are merged. 

Definition 2.6 Let f be a p-valued input two-valued 
output function. An  MDD for f an which 

1. a n  i-edge emerges to the right of an  (i - 1)-edge, 

2. the constant 1 node is to the left of the constant 
(1 5 i 5 p - l ) ,  and 

0 node 

is  r-planar (restricted-planar) i f  it has no  crossings. 

Lemma 2.4 A n  I-monotonic function has un  r -  
planar complete MDD. 

Definition 2.7 A reduced ordered multiple- 
valued decision diagram (ROMDD) as an MDD 
where 

1. two nodes are merged into one node i f  they repre- 

2. a node 0 is removed i f  all the children of 9 repre- 
sent the same function, and 

sent the same function. 

Lemma 2.5 A n  1-monotonic function has an T -  
planar ROMDD. 

(Proof) Consider a complete MDD of function f ,  as 
shown in Fig. 2.2. Because f is 1-monotonic, by 
Lemma 2.3, if a 5 b then f ( a , X 2 )  2 f ( b , X 2 ) .  The 
functions represented by the nodes at the same level 
are totally ordered. In the lowest level, they are con- 
stant 0 or 1. From Lemma 2.4, the complete MDD for 
f is r-planar. Now, reduce the complete MDD into an 
ROMDD. 

First, merge two nodes that represent same logic 
function. We show that the resulting MDD is also r- 
planar. Suppose that a, b, c, d ,  and e are nodes in the 
same level, where a 5 b 5 c 5 d 3 e.  Also, suppose 
that b and d have the property, 

f ( b , X 2 )  = f ( d , X 2 ) .  (2.1) 

Fig. 2.3(a) shows the situation. Because f is 1- 
monotonic, we have 

f ( b ,  X 2 )  c f ( c ,  X 2 )  s f (4  X 2 ) .  (2.2) 

From, (2.1) and (2.2), we have 

This shows that the sub-tree for c also represents the 
same function as b and d .  Thus, these three sub- 
trees can be merged into one as shown in Fig. 2.3(b). 
Note that this operation does not introduce a cross- 
ing. It follows that merging two nodes that represent 
the same function preserves r-planarity. Also, it is 
clear that the reduction of redundant nodes preserves 
r-planarity. Hence, we have the lemma. (Q.E.D.) 

A A A 
Figure 2.3: Derivation of r-planar MDD. 

Definition 2.8 A multiple-valued input two-valued 
output function f is a threshold function if f can 
be represented as 

n 

where wi is a weight for the variable x;(i  = 
1,2  ,..., n),  and T is the threshold of the function. 
The threshold function f is represented by the char- 
acteristic vector (w1, w2,. . . , w ,  : T ) .  

Theorem 2.1 Let f be a multiple-valued input two- 
valued output threshold function whose character- 
istic vector ( w l ,  w2, .. . , w, : T )  satisfies w, > 
E;=,+, wk(pk - I),  and w1 2 1, Then, f has an T -  
planar ROMDD. 

(Proof) Consider two vectors a = ( a l ,  a2,. . . ,a,) and 
b = ( b l , b 2 , .  . . ,b , ) ,  such that a 5 b. From the hy- 
pothesis of the theorem, we have 

n 

k=i+l 

when xi 2 1. Since a 5 6 ,  we have Cy='=, aiwi 5 cy='=, biwi. Thus, f ( a )  5 f ( b ) ,  and f is 1-monotone. 
By Lemma 2.5, f has an r-planar ROMDD. (Q.E.D.) 

Example 2.1 Consider the two-valued input thresh- 
old function f (x1 ,22)  with the characteristic vector 
(wl,, w2, w3 : 3") = (2 ,1 ,1  : T ) .  Note that this function 
satasfies the conditions of Theorem 2.1. Thus, f has 
a n  r-planar BDD. Note that f represents the functions 
f = ~ 1 2 2 x 3  when T = 4, f = x l ( x 2 V x 3 )  when T = 3, 
f = x1 V 22x3 when T = 2, f = x1 V x2 V x3 when 
T = 1, and f = 1 when T = 0. Fag. 2.4(a) is the com- 
plete decision tree with weighted edges. Fzg. 2.4(b) 2s 

the ROBDD for T = 2. (End of Example) 

Example 2.2 Consider the three-valued input thresh- 
old function f ( x1 ,x2 ,  2 3 )  with the characteristic vec- 
tor (w1, w2 : T )  = ( 3 , l  : T . Note that this function 

a n  r-planar MDD. Fig. 2.5(a) is the complete deci- 
sion tree with weighted edges. Fig. 2.5(b) shows the 
ROMDD for  T = 4 .  (End of Example) 

satisfies the conditions of 4 heorem 2.1. Thus, f has 
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(a) Complete decision tree with weights. (b) ROBDD. 

Figure 2.4: Derivation of r-planar ROBDD for thresh- 
old function. 

(a) Complete decision tree. (b) ROMDD. 

Figure 2.5: Derivation of r-planar ROMDD for thresh- 
old function. 

Example 2.3 Consider the two-valued input func- 
tion: f = x1 V ~ q ( ~ 3  V 24). Note that f is 
a threshold function with the charactefistzc vector 
( W ~ , , W ~ , W Q , W ~  : 7') = (5,3,1,1 : 4). This vector 
satzsfies the condition of Theorem 2.1. So, the func- 
tion with the ordering ( X I ,  2 2 , 2 3 ,  24) has an  r-planar 
ROBDD, as shown an Fig. 2.6(a). A different order- 
ing (x4, X I ,  2 3 ,  " 2 )  produces a non r-planar ROBDD, 
as shown in Fig. 2.6(b). (End of Example) 

Theorem 2.2 Suppose that a multiple-valued input 
two-valued output function f can be represented as 

f = X A . g  o r f = X A V g ,  

where x takes a value an P = {0,1, .  . . , p  - l } ,  A = 
{ a , a + l ,  ..., p - 1 } ,  ( l S a S p - l ) ,  a n d g d o e s n o t  
depend on X .  If g has an r-planar MDD, then f has 
an r-planar MDD. 

(Proof) Fig. 2.7(a) and (b) show r-planar MDDs for 
f = X A  g and f = X A  V g ,  respectively. (Q.E.D.) 

3 r-planar BDD 
In this section, we consider the class of two-valued 

input two-valued output functions having r-planar 
ROBDDs. Here, for simplicity, function means two- 
valued input two-valued output function, unless oth- 
erwise noted. 

Definition 3.1 A complete symmetric decision 
diagram (Fig. 3.1) is the decision diagram on  van-  
ables XI, 22,. . . , and x, that has n + 1 leaf nodes 
VO, V I , .  . . , and U,, such that U, can be reached by only 
an assignment of values to X = ( X I ,  2 2 , .  . . ,x,) whose 
weight (number of 1's) is i. 

(a) r- planar ROBDD. (b) non r- planar ROBDD. 

Figure 2.6: ROBDDs for f = x1 V x2(x3 V 24). 

f 

(a) r-planar MDD forf=XA.g. (b) r-planar MDD forf=X"vg. 

Figure 2.7: Decomposition of r-planar MDD. 

Fig. 3.;!(a), (b) and (c) show the complete symmetric 
decision diagrams for n = 1, 2 and 3, respectively. 
Note that they are planar, and, in general, we have 
the following: 

Lemma 3.1 A complete symmetric decision diagram 
has an  r-planar ROBDD. 

Definition 3.2 A voting function S k ( X )  is a to- 
tally symmetric threshold function that can be repre- 
sented as: 

1 if IlXll L 
S k ( X )  = { 0 otherwise, 

where llXll represents the weight (number of 1's) in 
the inputs X .  

f 

Figure 3.1: Complete symmetric decision diagram. 
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(a) n=l. (b) n=2. (c)  n=3. 

Figure 3.2: Complete symmetric decision diagrams for 
n = 1,2 ,3 .  

(a) Complete BDD. (b) ROBDD. 

Figure 3.3: Derivation of ROBDD for a voting func- 
tion. 

Lemma 3.2 A voting function has an r-planar 
ROBDD. 

(Proof) An ROBDD for an n variable voting function 
is derived from the complete symmetric decision dia- 
gram for n variables by assigning 0 to leaf nodes vo 
to  vi, and 1 to  leaf nodes ~ i + l  through U , .  Reduc- 
tion operations (e.g. merging uo through U ; ,  and U;+] 
through U,) preserves,r-planarity. (Q.E.D.) 

Example 3.1 Fig. 3.3 shows the construction de- 
scribed an the proof for n = 3. (End of Example) 

Definition 3.3 Let X = (X1,Xz  ,... , X T )  be a par- 
tition of X = (x1,x2 ,... , x n ) .  A function f is par- 
tially symmetric with respect to Xj( i  = 1,2 , .  . . , r )  i f  
f is invariant under any permutation of the variables 
in X i .  

Lemma 3.3 Let f be a partially symmetric func- 
tion with respect to Xi ,  where Xi contains ni vari- 
ables ( i  = 1 , 2 , . .  . , T ) .  Then, f is represented by 
a multiple-valued input two-valued output function 
g ( Y 1 ,  Yz, . . . , Y,), where Y;: takes one of n; + 1 values 
representing the number of 1’s  an xi. 
Definition 3.4 The multiple-valued input two-valued 
output function g that corresponds to the partially 
symmetric function f in Lemma 3.3, is called a com- 
panion function o f f .  

Theorem 3.1 A partially symmetric function has an  
r-planar ROBDD i f  the companion function has an 
T -planar R OMDD. 

f 

g 

(a) r- planar MDD for (b) r-planar BDD for 
* Y y (  Y p v  Yf ’ ) .  f= (x1vx2)(x3x4vx5x6). 

Figure 3.4: Derivation of r-planar BDD. 

(Proof) Suppose that the r-planar MDD for the com- 
panion function y is given. By replacing each node 
of the MDD with a complete symmetric decision dia- 
gram, we can make a BDD for the partially symmetric 
function f .  By Lemma 3.1, the complete symmetric 
decision diagram is an r-planar BDD. Thus, the BDD 
for f is also r-planar. (Q.E.D.) 

Example 3.2 f = (21 V x2)(x3x4 V 25x6) is par- 
tially symmetric with respect to X1 =   XI,^), X2 = 
( 2 3 , q )  and X- ( 2 5 , ~ ~ ) .  Let 

y, = o  if xi = (0,O) 

y ; = 2  if xi = (1,l). 
Y,  = 1 if Xi = ( 0 , l )  OT Xi = (1,0), and 

Then, the companion function g is represented by 

B y  Theorem 2.2, we can see that g has an r-planar 
MDD. Fig. 3.4(a) shows the r-planar MDD for  9 .  By 
replacing each node with an  r-planar BDD, we have an 
r-planar BDD f o r  f ,  as shown an Fig. 3.4(b). Note 
that f is not a threshold function. Also, note that 
companion functions can be generated iteratively. For 
example, (3.1) can be written as 

I n  this way, companion functions can be constructed 
from other companion functions. (End of Example) 

Lemma 3.4 A function f has an  r-planar ROBDD 
iff f d  has an  r-planar ROBDD, where f d  is the dual 
function o f f .  

(Proof Suppose that f has an r-planar ROBDD. In 

1-edge. Also, interchange the constant 0 and the con- 
stant 1. Then, the resulting ROBDD represents f d ,  
and it is also r-planar. (Q.E.D.) 

the B 2 D, for each node, interchange the 0-edge and 



Complete symmeuic 

XI 

x1x2 XI"& 

(a) rr=l. (b)n=2. (c )  n=3. 

Figure 3.5: r-planar BDDs for voting functions. 

Tn TWI Tz TI 

r- planar ROBDD \ 
(a) 

%I Sn %-I sz SI 

Figure 3.6: Generation of r-planar BDDs for voting 
functions. 

Lemma 3.5 Let sk(x) be a voting function such that 

There exists an  r-planar ROBDD that produces 
So(X), S,(X), . . . 7  and S,(X), simultaneously. 

(Proof) For n = 1, n = 2, and n = 3, the vot- 
ing functions are generated as shown in Fig. 3.5(a), 
(b), and (c), respectively. Assume that Fig. 3.6(a) 
is an r-planar ROBDD that generates all the voting 
functions of n-variables. Then, we can make an T- 
planar ROBDD that generates all the voting functions 
of ( n +  1)-variables as shown in Fig. 3.6(b). (Q.E.D.) 

Theorem 3.2 Suppose that X = (Xl,X2) is a par- 
tition of variables x = (21, 2 2 , .  . . ,zn), where x1 = 

n-k<,;s;-l,** ;) 
Voting function generato] 

Figure 3.7 Generation of an r-planar BDD. 

(21,22, # . .  , Z k )  and x2 = (2k+l, X k + 2 , .  . . ,Xn). Let 
$;(XI) be the symmetric function, 

Let Sk(.x2) be a voting function. If a function f can 
be represented as 

k 

f(x17~2) = V 1cli(xl)sa,(x2), (3.2) 
i = O  

where &,(X2) C Sa,+,(X2), then f has an  r-planar 
ROBDL). 

(Proof) By Lemma 3.1, there is a planar BDD for 
$ i  (a complete symmetric decision diagram). By 
Lemma 3.5, there is an r-planar BDD for s k  (a voting 
function). As shown in Fig. 3.7, consider the BDD 
where the upper block realizes $ i 's ,  and the lower 
block realizes Sk'S. By connecting appropriate ter- 
minals between two blocks, we have an r-planar BDD 
for the function f. (Q.E.D.) 

Exampde 3.3 Consider the function f = (21 @ 
z2)z3z4 V Z ~ Z ~ ( Z ~  V q ) .  f is partially symmetric with 
respect to XI = (q,z2)  and X2 = (23 ,zq ) .  Note that 
f can be represented as f(x1,x2) = $o(xl)&(x2) V 
$1 (XI):%(&)V$~(XI)S~ ( & I ,  where $o(x1) = 3 1 ~ 2 ,  

S2(X2) = 2 3 2 4 ,  and Sl(X2) = 2 3  V 24. Thus, by  
Theorem 3.2, f has an  r-planar BDD, as shown in 
Fig. 3.8'. (End of Example) 

'@l(xl) = 2 1  @ z27 $2(xl) = 21227 s3(x2) = 0, 

Corollary 3.1 A monotone increasing threshold 
function having at most two different weights has an  
T -plana:r BDD. 

(Proof) 

1) A monotone increasing threshold function f hav- 
ing only one weight is a voting function. Thus, 
by Lemma 3.2, f has an r-planar BDD. 
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Complete symmeuic 
decision diagram 

Voting function genera01 

Figure 3.8: r-planar BDD for f = ( X I  @ 22)x324 V 
" 1 2 2 ( " 3  v 2 4 ) .  

2) Suppose that f has a characteristic vector 
( W 1 , W 2 ,  ..., W k , W k + l  ,..., W ,  : T ) ,  where W1 = 
w2 = ...  = W k ,  and wk+l = Wk+2 = * * *  = 
w,. In this case, f is partially symmetric with 
respect to XI = (x1 ,22 , .  . . , z k )  and X2 = 
(xk+l, xk+2,. . . , x,), and f can be represented 
in the form (3.2). Since f is a monotone in- 
creasing function, we can assume that S a , ( X 2 )  
Sa,+,(X2). Thus, by Theorem 3.2, f has an r- 
planar ROBDD. (Q.E.D.) 

Lemma 3.6 Let X = (q, x2,.  . . ,z,). Let & ( x ) ( i  = 
0 ,1 , .  . . , t )  be threshold functions with a characteristic 
vector ( w l ,  w2,. . . , w, : T ) ,  where w,  = 1 and 

wi 2 2 wr, and 4i(x) _> 4 i + l ( X ) .  
r=i+l 

Then, both $ i ( X )  = 4 i ( X )  * d i + l ( X )  ( i  = 1,2 , .  . . , t  - 
1) and $ t ( X )  = d t ( X )  can be represented in an T -  
planar BDD. 

Example 3.4 Consider the threshold functzons with 
characteristic vector (2,1,1:T). In this case, 

4O(W = 1 (T = 0 )  
4 1 ( X )  = 5 1  v x 2  v x 3  ( T =  1) 
4 2 ( X )  2 1  V 2 2 ~ 3  ( T =  2) 
h ( X )  = Zl(Z2 V Z 3 )  (T = 3) 
4 4 ( x )  = 21x223 (T = 4).  

Therefore, 

$'4(x) = 44(x)  = 2 1 z 2 2 3  

$ '3 (X)  = 4 3 ( X )  - 4 4 ( X )  = " l ( " 2  @ " 3 )  

$ 2 ( X )  = 4 2 ( X ) .  4 3 ( X )  = 2 1 ~ 2 x 3  V ~ 1 ~ 2 2 3  
$ l ( X )  = + l ( X ) .  4 2 ( X )  = &("2 @ " 3 )  

@O(x) = dO(x) ' 4l(x) = 2 1 3 2 3 3 .  

x1 

x2 

m a  

vb VI w U5 V4 

Figure 3.9: BDD generating $; 'S .  

Fag. 2.4(a) shows the complete decision tree. By merg- 
ing  the terminal nodes that represent the same weight- 
sum, we have a BDD as shown an Fag. 3.9. 

(End of Example) 

Theorem 3.3 Suppose that X = ( X I ,  X 2 )  is a parti- 
tion of variables X = (XI, x2,. . . , x , ) .  If a function f 
can be represented as 

t 

f(x17~~2) = V +i(xl)sa;(x2), (3.3) 
i=O 

where S a i ( X 2 )  is a symmetric function satisfying 
S a , ( X 2 )  C Sa,+, ( X 2 ) ,  and +i (i = 1 ,2 , .  . . , t )  is func- 
tion as defined in Lemma 3.6, then f has an r-planar 
BDD. 

(Proof) We can prove this theorem in a similar way to 
Theorem 3.2. (Q.E.D.) 
Corollary 3.2 Suppose that a monotone increas- 
ing threshold function f has a characteristic vector 
( W l ,  W 2 , .  . . , wk, wk+l, .  . . , W ,  : T ) ,  where wk = 1, 

k 

w; 2 w j ,  (i = 1,2  ,..., k - l), and 
j=i+l 

wk = wk+l = ... = w,. 
ROBDD. 

Then, f has an r-planar 

(Proof) Note that f can he written in the form (3.3). 
Because f is inonotoiie increasing, we can assume that 
S a , ( X 2 )  C Sa,+, (X2) .  Thus, by Theorem 3.3, f has 
an r-planar ROBDD. (Q.E.D.) 

Example 3.5 Conszder the 5-varaable functzon wzth 
the characterzstzc vector (4 ,3 ,3 ,2 ,1  : 6).  f zs symmet- 
rac wath respect to X 2  = (x2,  x3) .  Also, the wezghts for 
XI = ( ~ 1 ~ x 4 , ~ ~ )  satzsfy the condztzons of Lemma 3.6. 
Thus, f can be represented as 

7 

f = V + i ( x l ) S a , ( x 2 ) .  
2=0 

Fag. 3.10 shows the r-planar BDD for f .  The upper 
block generates $',, and the lower block generates Sa,. 
Note that each edge has a wezght. In  each path from 
the root node to the constant 1, the sum of the wezghts 
2s greater than or equal to 6. On the other hand, zn 
each path from the root node to the constant 0, the sum 
of the wezghts is less than 6. We can reduce the BDD 
wzthout zntroduczng crossangs. (End of Example) 
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f 

Figure 3.10: BDD for a threshold function. 

f 

Figure 3.11: ROBDD for f = w(z V y )  V z t .  

Theorem 3.4 All the monotone increasing functions 
up to four variables have r-planar ROBDDs. 

(Proof) From the table of NPN-representative func- 
tions of four variables [5], we can identify all the 
monotone increasing functions. By using Theorem 2.2, 
Corollaries 3.1 and 3.2, we can verify that all the rep- 
resentative functions have r-planar BDDs, except for 
g = w(x V y )  V xz. Also, we can show that g has an 
r-planar BDD as shown in Fig. 3.11. (Q.E.D.) 

Theorem 3.5 All the monotone increasing threshold 
functions up to five variables have r-planur ROBDDs. 

(Proof) From the table of D-representative functions 
of NPN-equivalence classes up to five variables [9], 
we can verify the theorem. There are 62 representa- 
tive functions. By using Theorem 2.2, Corollaries 3.1 
and 3.2, we can show that 59 functions have r-planar 
BDDs. For the other 3 functions, we obtained their 
r-planar BDDs by inspection. (Q.E.D.) 

4 Conclusion and Comments 
In this paper, we presented the concept of r-planar 

MDDs and BDDs. Then, we showed classes of func- 
tions that have r-planar MDDs and BDDs. 

Throughout this paper, we assumed that l-edges 
emerge to  the right and O-edges emerge to the left. As 
it result, the realized functions are monotone increas- 
ing. By lifting this restriction, we can realize uiiate 
functions with r -  lanar BDDs. Specifically, given a 
unate function f & ) ,  we can convert it into a mono- 
tone increasing function by complementing variables. 

The converse operation of converting a monotone in- 
creasing function to a unate function, can be accom- 
plished in the domain of BDDs, by interchanging 0 
and 1 latbels on all edges associated with some vari- 
able. This is the same as having O-edges emerge to  
the right and l-edges to the left. Thus, with minor 
modificaition, the results presented here can be made 
to  apply to  unate functions. 

For a given monotone increasing function, in most 
cases, we can find an r-planar BDD among minimum 
BDDs (Le., BDDs having the least number of nodes), 
However, some functions require additional nodes to 
make their BDDs r-planar. In the past, reduction of 
the number of nodes was the major subject in the op- 
timization of BDDs. However, in implementing multi- 
level networks directly from the BDDs, the planarity 
of BDDs is also important, since crossing produces de- 
lay in LSIs. I t  is interesting to extend the theory for 
the decision diagrams with EXOR operators [13]. 
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